Along with Kohler and Koffka, Max Wertheimer was one of the principal proponents of Gestalt theory which emphasized higher-order cognitive processes in the midst of behaviorism. The focus of Gestalt theory was the idea of “grouping”, i.e., characteristics of stimuli cause us to structure or interpret a visual field or problem in a certain way (Wertheimer, 1922). The primary factors that determine grouping were: (1) proximity – elements tend to be grouped together according to their nearness, (2) similarity – items similar in some respect tend to be grouped together, (3) closure – items are grouped together if they tend to complete some entity, and (4) simplicity – items will be organized into simple figures according to symmetry, regularity, and smoothness. These factors were called the laws of organization and were explained in the context of perception and problem-solving.
Wertheimer was especially concerned with problem-solving. Werthiemer (1959) provides a Gestalt interpretation of problem-solving episodes of famous scientists (e.g., Galileo, Einstein) as well as children presented with mathematical problems. The essence of successful problem-solving behavior according to Wertheimer is being able to see the overall structure of the problem: “A certain region in the field becomes crucial, is focused; but it does not become isolated. A new, deeper structural view of the situation develops, involving changes in functional meaning, the grouping, etc. of the items. Directed by what is required by the structure of a situation for a crucial region, one is led to a reasonable prediction, which like the other parts of the structure, calls for verification, direct or indirect. Two directions are involved: getting a whole consistent picture, and seeing what the structure of the whole requires for the parts.” (p 212).
Application
Gestalt theory applies to all aspects of human learning, although it applies most directly to perception and problem-solving. The work of Gibson was strongly influenced by Gestalt theory.
Example
The classic example of Gestalt principles provided by Wertheimer is children finding the area of parallelograms. As long as the parallelograms are regular figures, a standard procedure can be applied (making lines perpendicular from the corners of the base). However, if a parallelogram with a novel shape or orientation is provided, the standard procedure will not work and children are forced to solve the problem by understanding the true structure of a parallelogram (i.e., the figure can be bisected anywhere if the ends are joined).
Principles
- The learner should be encouraged to discover the underlying nature of a topic or problem (i.e., the relationship among the elements).
- Gaps, incongruities, or disturbances are an important stimulus for learning
- Instruction should be based upon the laws of organization: proximity, closure, similarity and simplicity.
References
- Ellis, W.D. (1938). A Source Book of Gestalt Psychology. New York: Harcourt, Brace & World.
- Wertheimer, M. (1923). Laws of organization in perceptual forms. First published as Untersuchungen zur Lehre von der Gestalt II, in Psycologische Forschung, 4, 301-350. Translation published in Ellis, W. (1938). A source book of Gestalt psychology (pp. 71-88). London: Routledge & Kegan Paul.
- Wertheimer, M. (1959). Productive Thinking (Enlarged Ed.). New York:Harper & Row.
NOTE: Thanks to Gerhard Stemberger (stember@ibm.net) for his help with this page.